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Topological Representation Learning
A Differentiable Perspective
Bastian Rieck (@Pseudomanifold)


https://twitter.com/Pseudomanifold

Persistent homology

Vietoris—Rips complex calculation
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Given € € R, the Vietoris—Rips complex contains all simplices whose pairwise distance is less than or equal
to €. When using Euclidean balls of radius r = 0.5¢, a simplex is created for each pairwise intersection.
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Motivation

So far, however, persistent homology is used in a passive manner, meaning that the function f
mapping simplices to R is fixed and not informed by the learning task.’

1C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, ed. by H. Daumé Il
and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020, pp. 4314—4323.
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Making persistent homology differentiable

Terminology

# Let f: IM — R be a function on a manifold. Persistent homology can be seen as a map from
(M, f) to {(ci, di)}ies-

Let % be a map from points in the persistence diagram to simplex pairs (vertices and
edges),ie. L (c;,d;) = (0;,T;). We write & (-) to denote the map for a single point.

%

% Depending on the filtration, we can also map a simplex to one of its vertices. Fora sublevel
set filtration, we have a map 7 with 7 (0) := argmax ¢, f(v).

Finally, let 22 := (2., 2;), with P, :=V 0o F(c;) and P, :=V o F(d;).

%
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Making persistent homology differentiable

Example
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Making persistent homology differentiable

Example
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We have 7 ({a}) = x5 and 7 ({a, b}) = xa.
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Making persistent homology differentiable

Example
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X €
We have

We have 7 ({a}) = x5 and 7 ({a, b}) = xa.

We have 22(0,4) = (¥ 0.%)(0,4) = (x3, Xa).
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Making persistent homology differentiable

Gradient calculation sketch

% If the function values are distinct, then &2 is unique.

% If the function values are distinct, then &2 is constant in some neighbourhood.

Assume that f dependson 8 = (01,0,,...). We then have f (Z.(c;)) = f (v;) = c;, and, since

is constant,
oci _9f Pelen) _9fw) _8f
a0 a0 0; 00; "’

i.e. the partial derivative is equivalent to the derivative of the function evaluated at the image of
the map 22..

This formulation is due to A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function Optimization for
Continuous Shape Matching’, Computer Graphics Forum 37.5, 2018, pp. 13—25. Similar ideas occurred firstin M. Gameiro,
Y. Hiraoka and I. Obayashi, ‘Continuation of point clouds via persistence diagrams’, Physica D: Nonlinear Phenomena 334,

2016, pp. 118—132.
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Extensions

Persistent homology calculations can be made differentiable and many general classes of
topology-based optimisation schemes can be proven to converge!

M. Carriére, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda, ‘Optimizing persistent homology based functions;,
ICML, ed. by M. Meila and T. Zhang, Proceedings of Machine Learning Research 139, PMLR, 2021, pp. 1294—1303
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Part |: Unstructured Data



Topological autoencoders

Michael Moor Max Horn Karsten Borgwardt
W Michael_D_Moor W ExpectationMax W kmborgwardt

M. Moor*, M. Horn*, B. Rieck’ and K. BorgwardtT, ‘Topological Autoencoders’, ICML, ed. by
H. Daumé lll and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020,
pp. 7045—7054
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Topological autoencoders

Motivation
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Topological autoencoders

Overview

X X
Input data Reconstruction

Reconstruction loss

Topological loss

HELMHOTZ I Institute of Al for Health Tope al Representation Learning
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Topological autoencoders

Gradient calculation intuition

Distance matrix A

0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 O

Every point in the persistence diagram can be mapped to one entry in the distance matrix! Each
entry is a distance, so it can be changed during training (at least in the latent space).
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Topological autoencoders

Loss term
L =Ly . 7+Lr .o

Loz = AN [7X] - A% [n¥] | L7 = }|A%[n?] -AX 7]

PN

& input space

s

Z: latent space
# AX.: distances in input mini-batch

AZ. distances in latent mini-batch

oS

nX.: persistence pairing of input mini-batch

%

nZ: persistence pairing of latent mini-batch

%

The loss is bi-directional!

HELMHOLTZ
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Qualitative evaluation
‘Spheres’ data set

Autoencoder

Topological autoencoder
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Qualitative evaluation

‘Spheres’ data set; zoomingin...

Autoencoder Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

fcfg(x) =y exp(—a_1 dist(x, y)z),
YEX

where dist denotes a metric such as the Euclidean distance. This is well-defined on mini-batches
and on the full input data set.

Given g, we evaluate KL, := KL(f(ﬁ( I fUZ) which measures the similarity between the two
density distributions.

HELHOUTZ AW Institute of Al for Health Bastian Rieck




Quantitative evaluation

Method KLgg1 KlLg; KL; /-MRRE ¢-Cont /-Trust ¢-RMSE MSE (data)
[somap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4
PCA 0.332  0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
t-SNE 0.152  0.527 0.012 71 0.217 0.773 0.679 8.
UMAP 0.157 0.613 0.016 58 0.250 0.752 0.635 9.3
AE 0.566  0.746 0.01664 0.349 0.607 0.588 13.3 0.8155

TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

AlH Institute of Al for Health
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Flexibility of this loss term

TopologicalAutoencoder (torch.nn.Module):
__init__(self, model, lam=1.0):

O).__init__Q)
self.lam = lam
self.model = model

self.loss = SignaturelLoss(p=2)
self.vr = VietorisRipsComplex()

forward(self, x):
z = self.model.encode(x)

pi_x = self.vr(x)
pi_z = self.vr(z)
geom_loss self.model (x)

topo_loss = self.loss([x, pi_x], [z, pi_z])

loss = geom_loss + self.lam % topo_loss
loss

HELMHOLTZ
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Part |l: Structured Data



Graph classification

Example
Potential labels
Mo T AM Institute of Al for Health Topological Representation Learning  Bastian Rieck




How to represent graphs?

# Two graphs G and G’ can have a different number of vertices.

# Hence, we require a vectorised representation f : ¢ — R of graphs.

% Such a representation f needs to be permutation-invariant.

HELMHOLTZ
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Message passing

The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger

parts of the graph.
A % Operations remain local.
% Message passing can be iterated.
B C % Need to define aggregation function.
D % Representations can be combined.
E
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Message passing

The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger

parts of the graph.
A % Operations remain local.
% Message passing can be iterated.
B C % Need to define aggregation function.

7>

DW aggregate (sum, mean, ..) > Representations can be combined.

E
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Graph neural networks in a nutshell

%

Learn node representations i, based on aggregated attributes a,,.

oS

Aggregate them over neighbourhoods.

o3

%~ Iteration k contains information up to k hops away.

Repeat procedure K times.

al .= aggregate(k)({h&k‘” lue Wg(v)})
AP .= Combine(k)(h(k—l),a(yk))

14

he := readout({h | v e 75})

This terminology follows K. Xu, W. Hu, ]. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural
Networks?, ICLR, 2019.

e A Institute of Al for Health
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A topological layer for graph classification
M. Horn*, E. De Brouwer*, M. Moor, Y. Moreau, B. Rieck™ and K. Borgwardt, ‘Topological Graph Neural Networks’, ICLR, 2022

ph Neural Networks

Max Horn Edward De Brouwer Michael Moor

W @ExpectationMax W @EdwardOnBrew W @Michael_D_Moor

Yves Moreau  Karsten Borgwardt
W @kmborgwardt
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Topological graph neural networks

Overview

Node attributes k views Diagrams Aggregation Output FQ)

Ju ] [
pnil o Rl e B e el o b

2 .
1 / vl

# Useanode map ®: R — R¥ to create k different filtrations of the graph.

% Use a coordinatisation function W to create compatible representations of the node
attributes.

HELHOUTZ AW Institute of Al for Health
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Choosing ® and ¥

% The node map ® can be realised using a neural network.

% The coordinatisation function W can be realised using any vectorisation of persistence
diagrams (landscapes, images, ...), but we found a differentiable coordinatisation function to be
most effective.?

2C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, ed. by H. Daumé IlI
and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020, pp. 4314—4323.
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Expressivity of TOGL

Context

Typical GNN architectures are no more expressive than the Weisfeiler—Lehman test for graph
isomorphism, commonly abbreviated as WL[1].

Theorem

TOGL (and persistent homology) is more expressive than WL[1], i.e. (i) if the WL[1] label sequences for
two graphs G and G' diverge, there exists an injective filtration f such that the corresponding persistence
diagrams Do and D) are not equal, and (ii) there are graphs that WL[1] cannot distinguish but TOGL can!

Example graphs

1

w0
nnnnnnn
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Experiments

% Take existing GNN architecture.
% Replace one layer by TOGL.

% Measure predictive performance.

This strategy ensures that the number of parameters is approximately the same, thus facilitating
a fair comparison!

HELHOUTZ AW Institute of Al for Health
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Syntheticdata sets

Binary classification problem; generate same number of graphs for each of the classes. Use
simple topological structures that are nevertheless challenging to detect with standard GNNss.

Cycles Necklaces

e A Institute of Al for Health




Expressivity

Cyclesdataset
100.0 ‘
3
P 75.0
g
s 50.0
o
&
i
S 250
GCN-k — GCN-k-TOGL-1 — WL — PH
0.0 1 1 1 1
1 2 3 4 5 6 7 8
Number of GCN layers / Number of WL iterations
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Expressivity

Necklaces dataset

100.0 e + = ;
< //
(:: 75.0 3 E = = = ??/ -
:)>/‘ ] —/:—//T
£ 500 . —
(9]
% 4
i
@ 250
— GCN-k — GCN-k-TOGL-1 — WL — PH
0.0 1 1 1 1
1 2 3 4 5 6 7 8
Number of GCN layers / Number of WL iterations
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the utility of
topological features. Hence, we replaced all node features by random ones.

Graph classification Node classification
METHOD DD ENZYMES MNIST PROTEINS Pattern
GCN-4 68.0+3.6 22.0+3.3 76.240.5 68.842.8 85.5+0.4

GCN-3-TOGL1  75.1+2.1 30.3+6.5 84.8+0.4 73.8+4.3 86.6+0.1

GIN-4 75.6+2.8 21.3+6.5 83.4+0.9 74.613.1 84.840.0
GIN-3-TOGL1  76.242.4 23.7+6.9 84.4+1.1  73.9+4.9 86.7+0.1

GAT-4 63.3+3.7 21.7+2.9 63.2+10.4 67.5+2.6 73.111.9
GAT-3-TOGL-1  75.7+2.1 23.5+6.1 77.2+10.5 72.4+4.6 59.643.3

HELMHOLTZ
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not driven by the
availability of topological structures!

Graph classification

Node classification

METHOD CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B CLUSTER
CATED-GCN-4  67.3+0.3  72.9+21 65.7+4.9 97.3%0.1 76.4+2.9 — — 60.4+0.4
WL — 77.7£2.0 54.3+0.9 — 73.1+0.5 71.240.5  78.0+0.6 —
WL-OA — 77.841.2  58.9+0.9 — 73.5+0.9 74.0+0.7  87.6+0.3 —
GCN-4 54.24+1.5 72.8441 65.844.6 90.0+0.3 76.142.4 68.6+4.9  92.841.7 57.0+0.9
GCN-3-TOGL-1 61.741.0  73.244.7 53.0£9.2 95.5+0.2 76.0+3.9 72.042.3  89.4+2.2 60.440.2
7.5 0.4 5.5 3.4 3.4
GCIN-4 54.841.4  70.843.8 50.0+12.3 96.140.3 72.343.3 72.842.5  81.7+6.9 58.5+0.1
GIN-3-TOGL-1 61.340.4  75.244.2 43.847.9 96.1+0.1 73.614.8 74.244.2  89.7+2.5 60.440.2
6.5 4.4 0.0 1.3 1.4 8.0 1.9
GAT-4 57.4+0.6 711431  26.8441 941403 71.345.4 73.244.1  44.246.6 56.6+0.4
GAT-3-TOGL-1 63.941.2  73.742.9  51.54+7.3  95.910.3 75.243.9 70.8+8.0  89.5+8.7 58.4+3.7
6.5 2.6 24.7 1.8 3.9 45.3 1.8

HELMHOLTZ
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Comparison with other topology-based methods

Using a very simple GCN with TOGL still exhibits favourable performance in comparison to other
topology-based methods.

METHOD REDDIT-5K IMDB-MULTI NCI1 REDDIT-B  IMDB-B
GFL 55.7+2.1 49.7+2.9  71.2421 90.242.8 74.5+4.6
PersLay 55.6 48.8 73.5 — 71.2

GCN-1-TOGL-1 56.1+1.8 52.0+4.0 75.8+1.8 90.1+0.8 74.343.6

HELMHOLTZ
MUNICH
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Conclusion

%

‘If all you have is nails, everything looks like a hammer? Our data sets may actually stymie
progress in GNN research because their classification does not necessarily require
structural information.

%

Nevertheless, higher-order structures (such as cliques) can be crucial in discerning between
different graphs or data sets.

oS

Can we also learn sparse filtrations?

%

Large untapped potential in topology-based optimisation methods!

3Credit: Mikael Vejdemo-Johannson
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Do you like ML and Topology?

ICLR Workshop on Geometrical and Topological Representation Learning
https://gt-rl.github.io; deadline: Feb 25, AoE

Software

https://github.com/aidos-1lab/pytorch-topological
Looking for additional contributors!

0
nnnnnnn

AlH Institute of Al for Health Topo

tation Learning

Bastian Rieck

33/33


https://gt-rl.github.io
https://github.com/aidos-lab/pytorch-topological

