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Graph learning

Tasks
� Graph classification
� Graph regression
� Node/edge classification
� Node/edge regression
� Link prediction
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Graph representations
Fundamental properties

� Two graphsG andG′ can have a different number of vertices.
� Hence, we require a vectorised representation 𝑓∶ G→R𝑑 of graphs.
� Such a representation 𝑓 needs to be permutation-invariant.
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Now and then

Shallow approaches
� node2vec (encoder–decoder)
� Graph kernels (RKHS feature maps)
� Laplacian-based embeddings

Deep approaches
� Graph convolutional networks
� Graph isomorphism networks
� Graph attention networks
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Message passing
The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger
parts of the graph.

𝐴

𝐵 𝐶

𝐷

𝐸

𝐹 𝐺

aggregate (sum, mean, …)

� Operations remain local.
� Message passing can be iterated.
� Need to define aggregation function.
� Representations can be combined.
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Graph neural networks in a nutshell

� Learn node representationsℎ𝑣 based on aggregated attributes𝑎𝑣.
� Aggregate them over neighbourhoods.
� Iteration𝑘 contains information up to𝑘 hops away.
� Repeat procedure𝐾 times.

𝑎(𝑘)𝑣 ∶= aggregate(𝑘)({ℎ(𝑘−1)
𝑢 ∣ 𝑢 ∈𝒩G(𝑣)})

ℎ(𝑘)
𝑣 ∶= combine(𝑘)(ℎ(𝑘−1)

𝑣 ,𝑎(𝑘)𝑣 )

ℎG ∶= readout({ℎ(𝐾 )
𝑣 ∣ 𝑣 ∈ 𝒱G})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural
Networks?’, ICLR, 2019.
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Expressivity of graph neural networks
The Weisfeiler–Lehman test for graph isomorphism

1 Create a colour for each node in the graph (based on its label or its degree).
2 Collect colours of adjacent nodes in a multiset.
3 Compress the colours in the multiset and the node’s colour to form a new one.
4 Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

� The other direction is not valid! Non-isomorphic graphs can give rise to coinciding
compressed labels.

WL[1] is the baseline for measuring GNN expressivity.1 ,2

1C. Morris et al., ‘Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks’, AAAI, 2019.
2K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural Networks?’, ICLR, 2019.
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Weisfeiler–Lehman subtree features
Example forℎ = 1

𝑣1

𝑣2

𝑣4 𝑣5 𝑣6

𝑣3

𝑣7
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Weisfeiler–Lehman subtree features
Example forℎ = 1

𝑣1

𝑣2

𝑣4 𝑣5 𝑣6

𝑣3

𝑣7 Label
Count 3 1 2 1
Feature vector Φ(G) ∶= (3,1,2,1)
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A topological layer for graph classification
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ABSTRACT

Graph neural networks (GNNs) are a powerful architecture for tackling graph learn-
ing tasks, yet have been shown to be oblivious to eminent substructures such as
cycles. We present TOGL, a novel layer that incorporates global topological infor-
mation of a graph using persistent homology. TOGL can be easily integrated into
any type of GNN and is strictly more expressive (in terms the Weisfeiler–Lehman
graph isomorphism test) than message-passing GNNs. Augmenting GNNs with
TOGL leads to improved predictive performance for graph and node classification
tasks, both on synthetic data sets, which can be classified by humans using their
topology but not by ordinary GNNs, and on real-world data.

1 INTRODUCTION

Graphs are a natural representation of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address the two dominant
graph learning tasks of graph classification or node classification. In particular, graph neural
networks (GNNs) describe a flexible set of architectures for such tasks and have seen many successful
applications over recent years (Wu et al., 2021). At their core, many GNNs are based on iterative
message passing schemes (see Shervashidze and Borgwardt (2009) for an introduction to iterative
message passing in graphs and Sanchez-Lengeling et al. (2021) for an introduction to GNNs). Since
these schemes are collating information over the neighbours of every node, GNNs cannot necessarily
capture certain topological structures in graphs, such as cycles (Bouritsas et al., 2021). These
structures are highly relevant for applications that require connectivity information, such as the
analysis of molecular graphs (Hofer et al., 2020; Swenson et al., 2020).

We address this issue by proposing a Topological Graph Layer (TOGL) that can be easily integrated
into any GNN to make it ‘topology-aware.’ Our method is rooted in the emerging field of topological
data analysis (TDA), which focuses on describing coarse structures that can be used to study the shape
of complex structured and unstructured data sets at multiple scales. We thus obtain a generic way to
augment existing GNNs and increase their expressivity in graph learning tasks. Figure 1 provides a
motivational example that showcases the potential benefits of using topological information: (i) high
predictive performance is reached earlier for a smaller number of layers, and (ii) learnable topological
representations outperform fixed ones if more complex topological structures are present in a data set.

Our contributions. We propose TOGL, a novel layer based on TDA concepts that can be inte-
grated into any GNN. Our layer is differentiable and capable of learning contrasting topological
representations of a graph. We prove that TOGL enhances expressivity of a GNN since it incorporates
the ability to work with multi-scale topological information in a graph. Moreover, we show that
TOGL improves predictive performance of several GNN architectures when topological information
is relevant for the respective task.

1
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Motivation

Status quo
� Graphs are topological objects.
� But GNNs are incapable of recognising certain topological structures!

Challenge

What can we gain when imbuing them with knowledge about the topology?
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Background
A brief introduction to persistent homology

Persistent homology is based on the concept of a filtration, i.e. an ordering of nodes. As nodes are
added to the graph, its topological features change.

A hierarchy of topological features
� 𝑑 = 0: connected components
� 𝑑 = 1: cycles
� 𝑑 = 2: voids (requires representation of 2-cliques in graph)
� 𝑑 =𝐷: higher-dimensional holes (requires representation of𝐷-cliques in graph)
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Background
A brief introduction to persistent homology, continued

Store information about features in a persistence diagram. A tuple (𝑐,𝑑) indicates that a
topological feature was created at step 𝑐 and destroyed at step𝑑.
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Taking stock

� Filtrations provide multi-scale topological features.
� Persistence diagrams serve as topological descriptors.

Questions
� How to obtain ‘good’ filtrations?
� How to use persistence diagrams (i.e. multi-sets) in a differentiable setting?
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Topological graph neural networks
Overview

𝑥(𝑣) ∈R𝑑

Node attributes

2 1

2 1 = 𝑎(𝑣)𝑘
1 …

3 1

1 2 = 𝑎(𝑣)1
2

𝑘 views

…

Diagrams

Ψ[𝑣]

+

𝑥(𝑣)

�̃�(𝑣)

Aggregation

�̃�(𝑣) ∈R𝑑

Output �̃�(𝑣)

Φ Ψ

� Use a node mapΦ∶ R𝑑 →R𝑘 to create𝑘 different filtrations of the graph.
� Use a coordinatisation functionΨ to create compatible representations of the node

attributes.
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ChoosingΦ andΨ

� The node mapΦ can be realised using a neural network.
� The coordinatisation functionΨ can be realised using any vectorisation of persistence

diagrams (landscapes, images, …), but we found a differentiable coordinatisation function to be
most effective.3

3C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, 2020.
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Expressivity of TOGL

Theorem
TOGL (and persistent homology) is more expressive than WL[1], i.e. (i) if the WL[1] label sequences for
two graphs𝐺 and𝐺 ′ diverge, there exists an injective filtration𝑓 such that the corresponding persistence
diagrams𝒟0 and𝒟′

0 are not equal, and (ii) there are graphs that WL[1] cannot distinguish but TOGL can!

Example graphs

G G′
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Experiments

� Take existing GNN architecture.
� Replace one layer by TOGL.
� Measure predictive performance.

This strategy ensures that the number of parameters is approximately the same, thus facilitating
a fair comparison!
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Synthetic data sets

Binary classification problem; generate same number of graphs for each of the classes. Use
simple topological structures that are nevertheless challenging to detect with standard GNNs.

Cycles Necklaces
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Expressivity
Cycles data set

1 2 3 4 5 6 7 8
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Expressivity
Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the utility of
topological features. Hence, we replaced all node features by random ones.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0 ± 3.6 22.0 ± 3.3 76.2 ± 0.5 68.8 ± 2.8
GCN-3-TOGL-1 75.1 ± 2.1 30.3 ± 6.5 84.8 ± 0.4 73.8 ± 4.3

GIN-4 75.6 ± 2.8 21.3 ± 6.5 83.4 ± 0.9 74.6 ± 3.1
GIN-3-TOGL-1 76.2 ± 2.4 23.7 ± 6.9 84.4 ± 1.1 73.9 ± 4.9

GAT-4 63.3 ± 3.7 21.7 ± 2.9 63.2 ± 10.4 67.5 ± 2.6
GAT-3-TOGL-1 75.7 ± 2.1 23.5 ± 6.1 77.2 ± 10.5 72.4 ± 4.6

Node classification

Pattern

85.5 ± 0.4
86.6 ± 0.1

84.8 ± 0.0
86.7 ± 0.1

73.1 ± 1.9
59.6 ± 3.3
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not driven by the
availability of topological structures!

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GATED-GCN-4 67.3 ± 0.3 72.9 ± 2.1 65.7 ± 4.9 97.3 ± 0.1 76.4 ± 2.9 — —
WL — 77.7 ± 2.0 54.3 ± 0.9 — 73.1 ± 0.5 71.2 ± 0.5 78.0 ± 0.6
WL-OA — 77.8 ± 1.2 58.9 ± 0.9 — 73.5 ± 0.9 74.0 ± 0.7 87.6 ± 0.3

GCN-4 54.2 ± 1.5 72.8 ± 4.1 65.8 ± 4.6 90.0 ± 0.3 76.1 ± 2.4 68.6 ± 4.9 92.8 ± 1.7
GCN-3-TOGL-1 61.7 ± 1.0 73.2 ± 4.7 53.0 ± 9.2 95.5 ± 0.2 76.0 ± 3.9 72.0 ± 2.3 89.4 ± 2.2

7.5 0.4 −12.8 5.5 −0.1 3.4 −3.4

GIN-4 54.8 ± 1.4 70.8 ± 3.8 50.0 ± 12.3 96.1 ± 0.3 72.3 ± 3.3 72.8 ± 2.5 81.7 ± 6.9
GIN-3-TOGL-1 61.3 ± 0.4 75.2 ± 4.2 43.8 ± 7.9 96.1 ± 0.1 73.6 ± 4.8 74.2 ± 4.2 89.7 ± 2.5

6.5 4.4 −6.2 0.0 1.3 1.4 8.0

GAT-4 57.4 ± 0.6 71.1 ± 3.1 26.8 ± 4.1 94.1 ± 0.3 71.3 ± 5.4 73.2 ± 4.1 44.2 ± 6.6
GAT-3-TOGL-1 63.9 ± 1.2 73.7 ± 2.9 51.5 ± 7.3 95.9 ± 0.3 75.2 ± 3.9 70.8 ± 8.0 89.5 ± 8.7

6.5 2.6 24.7 1.8 3.9 −2.4 45.3

Node classification

CLUSTER

60.4 ± 0.4
—
—

57.0 ± 0.9
60.4 ± 0.2

3.4

58.5 ± 0.1
60.4 ± 0.2

1.9

56.6 ± 0.4
58.4 ± 3.7

1.8
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Conclusion

� ‘If all you have is nails, everything looks like a hammer.’4 Our data sets may actually stymie
progress in GNN research because their classification does not necessarily require
structural information.

� Nevertheless, higher-order structures (such as cliques) can be crucial in discerning between
different graphs or data sets.

� Can we also learn sparse filtrations?
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