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Persistent homology

Vietoris-Rips complex calculation
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Given € € R, the Vietoris-Rips complex contains all simplices whose pairwise distance is less
than or equal to €. When using Euclidean balls of radius » = 0.5¢, a simplex is created for
each pairwise intersection.
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Distances between persistence diagrams
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Stability theorem

Robustness to small-scale perturbations

Let M be a triangulable space with continuous tame functions f,g: M — R. Then
the corresponding persistence diagrams satisfy We, (Df, Dy) < || f — | o-
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Stability theorem
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Implications for machine learning

Need to be careful when working with mini-batches Mofa point cloud M. As an
example, consider a point cloud with 100 points (normally-distributed in R?) and 50

subsamples of varying size m.
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Bridging the chasm

e Persistent homology is inherently discrete
e Deep learning is inherently continuous

Challenge

Can we make the calculation of a persistence diagram differentiable, in particular if
we have some control over the input space M?
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First approach

Continuation of Point Clouds via Persistence Diagrams (M. Gameiro et al.)

Represent persistent homology calculation as a single map
of the form
R">x—yeR",

where x is a point cloud and y is a vectorised sequence of
persistence diagrams.

Show that this map decomposes into

g h
X—=7r—Y,

where g calculates a filtration, and & calculates its
persistence diagrams.

Show that g and h are differentiable, thus implying that
f = ho gis differentiable.
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Second approach

Topological Function Optimization for Continuous Shape Matching (A. Poulenard et al.)

Optimization for
s Shape Matching

e Introduced in the context of analysing a scalar-valued
function over a point cloud.
e Applications for shape matching or function simplification.

e Simpler proof of local differentiability!
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Sketch of the proof

Terminology

ETHziirich

Let f: M — R be a function on a point cloud. Persistent homology can be seen
as amap from (M, f) to {(c;, d;) }icz-

Let S be a map from points in the persistence diagram to pairs of simplices, i.e.
S(ci, d;) = (03, 7;). We write S(-) to denote the map for a single point.
Depending on the filtration, we can also map a simplex to one of its vertices. For
the sublevel set filtration, for example, we have a map V with

V(o) := argmax,, f(v).

Finally, let P := (P, P;), with P, :=V o S(c;) and P; :=V o S(d;).
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Sketch of the proof

Example
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Sketch of the proof, continued

o If the function values are distinct, then P is unique.
o [f the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on 6 = (01,65, ...). We then have f(P.(c;)) = c;, and, since
P is constant,

oci _ 9f (Pe(ci)) _ of(vi) _ 9 (0

2, 9 00, 00,

i.e. the partial derivative is equivalent to the derivative of the function evaluated at
the image of the map P..

It is a little bit more complicated when using distances instead of scalar-valued filtrations, but the
principle remains the same.

ETHziirich
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Topological autoencoders

Topological Autoencoders

h

Michael Moor Max Horn Karsten Borgwardt
W Michael_D_Moor W ExpectationMax W kmborgwardt
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Topological autoencoders

Motivation
TopoAE
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Topological autoencoders

Overview

X X
Input data Reconstruction

V4

Latent code

Reconstruction loss

Topological loss
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Topological autoencoders

Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss
function!

Why this works in theory

Let X be a point cloud of cardinality 7 and X(™) be one subsample of X of cardinality
m, i.e. X(") C X, sampled without replacement. We can bound the probability of the
persistence diagrams of X(") exceeding a threshold in terms of the bottleneck
distance as

P (Ww(p?f pX™ ) > e) <P (distH<X, X<m>) > 2e> ,

where disty denotes the Hausdorff distance. In other words: mini-batches are
topologically similar if the subsampling is not too coarse.

ETHziirich
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Topological autoencoders

Gradient calculation intuition

Distance matrix A

0 1 9 10
1 07 8
9 7 0 3
10 8 3 0

Every point in the persistence diagram can be mapped to one entry in the distance
matrix! Each entry is a distance, so it can be changed during training (at least in the
latent space).
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Topological autoencoders

Loss term

Ly=Ly,z+Lz x
2 2
Lyz = 5||AX[7X] — A% [7X]|| Lzox = 5| A%[”] — AX[7”]]]

e X: input space

Z: latent space
AX: distances in input mini-batch

AZ: distances in latent mini-batch
o 17X: persistence pairing of input mini-batch
e 71t%: persistence pairing of latent mini-batch

The loss is bi-directional!
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Qualitative evaluation

‘Spheres’ data set

PCA

ETHziirich

UMAP Autoencoder

t-SNE Topological autoencoder
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Qualitative evaluation

‘Spheres’ data set; zooming in...

Autoencoder Topological autoencoder

ETHziirich Topology-Based Representation Learning ~ Bastian Rieck  2nd July 2020 19/32



Qualitative evaluation
‘FashionMNIST’ data set

PCA

ETHziirich

Autoencoder

t-SNE Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

ff(x) = Z exp(—cf1 dist(x,y)2>,

yeX

where dist denotes a metric such as the Euclidean distance. This is well-defined on
mini-batches and on the full input data set.

Given o, we evaluate KL, := KL(f || f#), which measures the similarity between
the two density distributions.

ETHziirich
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Quantitative evaluation

Data set Method KLy KLg; KL; ¢-MRRE ¢-Cont ¢-Trust ¢-RMSE MSE (data)

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
t-SNE  0.152 0.527 0.01271 0.217 0.773 0.679 8.1
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 135 0.8681

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844

t-SNE  0.405 0.071 0.00198 0.020 0.967 0.974 41.3
‘Fashion-MNIST” UMAP  0.424 0.065 0.00163 0.029 0.981 0.959 13.7

AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020

TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227
t-SNE  0.277 0.133 0.00214 0.040 0.921 0.946 229

‘MNIST’ UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6
AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373
TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388

‘Spheres’
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Topological autoencoders

Summary

e A simple way to preserve topological information of the input space for
dimensionality reduction tasks

e Our loss term is differentiable under mild theoretical assumptions
e We only need distances to train (simple extension to other structured data sets?)

ETHziirich
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Learning graph filtrations

Graph Filtration Learning

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
WMarcNiethammer W rkwitt1982
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Message passing in graphs
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02 U3

U4

(4

(43 07
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Message passing in graphs
(4]

(%) 03

v4 @ aggregate (via ), for example)

U5

Ug (%4
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Message passing in graphs
01

02 U3

v4 @ aggregate (via ), for example)

U5

(43 07

Repeat this process multiple times and update the vertex representations accordingly.
Use a readout function to obtain a graph-level representation.
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Learning graph filtrations

Motivation

e When classifying graphs with TDA, we often employ a filter function f: 20 — R.
For example, f(v) := deg(v) is commonly employed.

e We typically extend f to a full graph G by setting f({u, v} := max{f(u), f(v)}.
e Can we learn f end-to-end?

ETHziirich Topo
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Learning graph filtrations

Details

Use a differentiable coordinatisation scheme of the form ¥: D — RR. Letting
p := (c,d) for a tuple in a diagram, we have

1 1
‘F = - 7
W)= T el ~ T =Tp =ell]

with ¢ € R? and r € R being trainable parameters. The whole diagram is represented
as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a
persistence diagram into R".

ETHziirich
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A readout function based on persistent homology

ETHziirich

‘persistent_homology‘
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{(ci,di) biez
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A readout function based on persistent homology

ETHziirich

‘persistent_homology‘

Gradient exists

\ v
7 — 7 —> | MLP|—> ¢
(n times)
{(ci,di) biez
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Obtaining a filter function f

Use a single GIN-¢ layer with one level of message passing (1-GIN) with hidden
dimensionality 64, followed by a two-layer MLP.

GIN-1,h = 64

—_

MLP (64,64, 1) with sigmoid activation

Hence, f: U — [0, 1].

ETHziirich
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Using this in practice

e If f is injective on the graph vertices, the gradient exists.

e We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

e Simple integration into existing architectures.
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Using this in practice

e If f is injective on the graph vertices, the gradient exists.

e We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

e Simple integration into existing architectures.

Method IMDB-BINARY IMDB-MULTI
1-GIN (GFL) 74.54+4.6 49.74+2.9
1-GIN (SuUM) 73.5+3.8 50.3+2.6
1-GIN (SP) 73.0+4.0 50.54+2.1
Baseline 72.7+4.6 49.94+4.0
PH 68.9+3.5 46.1+4.2

sed Representation Learning  Bastian Rieck  2nd July 2020
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Graph filtration learning

e We are able to learn a scalar-valued filtration function in an end-to-end fashion.

e The readout function integrates nicely into existing architectures.

¢ Predictive performance is better than ‘raw’ persistent homology (with only a
single level of message passing).

ETHziirich
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Summary

e Persistent homology can be made differentiable!

e Topological features improve representation learning tasks.

o This is only just the beginning; need to handle higher-dimensional features,
different filtrations, and much more...

v My co-authors, in particular Max, Michael, and Roland for providing figures,
illustrations, and animations.
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